Activité chimie	Volume molaire

I Comparaison des volumes occupés par une mole

1. Tableau comparatif

Il s'agit de comparer les volumes d'une mole de différentes espèces chimiques solides, liquides ou gazeuses.

Formule de l'espèce chimique	Etat physique « CNTP »	Volume molaire V _m ()	Masse molaire ()	Masse volumique (g.mL ⁻¹)
H ₂				8,93.10 ⁻⁵
CH ₄				7,14.10 ⁻⁴
Cl ₂				3,17.10 ⁻³
C ₂ H ₆ O (éthanol)				0,785
Fe				7,85
NaCl				2,25

^	\sim	1
2.	Conc	11111/
4 • '	-conc	iuic

II Relation entre le volume, le volume molaire et la quantité de matière Loi d'Avogadro-Ampère

Le volume molaire d'un gaz, noté V_{m} ,Il dépend des	est; il s'exprime en
Si V désigne le volume occupé par un	gaz et n la quantité de matière, alors
	n =
n enV enV _m en	
formules équivalentes:	
V =et V _m =	

^{*}pour une pression voisine de 1 bar

III Variations du volume molaire avec la température

V _m (L.mol ⁻¹)	20,7	22,4	?	26,5	30,6	47,0
température θ en °C	-20	0	20	50	100	300

Tracer le graphe $Vm = f(\theta)$

Quelle est la grandeur à mettre en abscisse ? en ordonnée ?

Les points sont ils alignés ?

Les relier et en déduire le volume molaire à $\theta = 20^{\circ}$ C

à 20 °C et sous une pression voisine de 1,0 bar, $Vm = \dots L.mol^{-1}$ pour tous les gaz CNTP :

Dans les CNTP , le volume molaire Vm = L.mol⁻¹ pour tous les gaz

IV Conséquences: propriétés des gaz

1. On observe sur une photo 3 flacons de 1L remplis respectivement (sous pression normale) avec

Du dichloreCl₂

Du dioxyde d'azote NO₂

Du dioxygène O₂

Représenter ces flacons et noter les couleurs des gaz

2. Déterminer le nombre de molécules présentes dans chaque flacon